Tody: Topology in \mathbb{R} ?
Read Along: Mantres Sec 3
Metric on a set X :

1. Jymmetric 2. postivity 3. trimgle.

Metric space, subsuce
Examples: $1 \cdot \mathbb{R}^{n},\| \|, \mathbb{R}^{n}, 11$
2. Discrete
3. $C([0,1])$, sup norm.
$U\left(x_{0}, t\right)$ " $\epsilon-n b d$ ", " ϵ-bul".
Open set, closed sit.
$U\left(x_{0}, \epsilon\right)$ is open
Thm ln! ϕ, X are open
2. V_{α} opm $\Rightarrow U U_{\alpha}$ is opm
3. V_{i} opon $i=1, \ldots n \Rightarrow \bigcap_{i \rightarrow 1}^{n} V_{i}$ is opon dune

Thm Ya $U \subset \mathbb{R}^{n}$ is $l l .11$-opin itf it is 1.1 -open.
Thm 16 1. ϕ, X we closud
2. F_{α} closel \Rightarrow MFa is closa.
3. Fi closed, i=1...n \rightarrow UFi is closed.

Thm Yb $F \subset \mathbb{R}^{n}$ is 11 . 11 -chosce ift it is 1.1 -ctated.
Thm 2 YcX a subspace ot a motric space.
then $A \subset Y$ is open iff $\exists \cup C X$ open sit.
$A=Y \cap U$, and $B C Y$ is chosed iff
$\exists F \subset X$ clored s.t. $B=Y \cap F$.

Def Limit x_{0} of $A \subset X$:

$$
\forall \epsilon>0 \quad\left(U\left(x_{0}, t\right) \backslash\left\{x_{0}\right\}\right) \cap A \neq \varnothing
$$

Equiv: every nod of x_{0} contains os-many demists of A.
closure: $\bar{A}=A \cup\{$ limit pts of $A\}$
Them A is cased $\Leftrightarrow A=\bar{A}$
Suppose X \& Y are metric, wa metrics $d x \& d y$
Def $f: X \rightarrow Y$ is cont. at $x_{0} \in X$ if for every abl V of $f\left(x_{0}\right) \quad[:=$ an open set contaring $\left.f\left(x_{0}\right)\right]$ the is a nad U of x_{0} sit. $f(U) \subset V$

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad d x\left(x, x_{0}\right)<\delta \Rightarrow d y\left(f\left(x_{1}, f\left(x_{0}\right)\right)<\epsilon\right.
$$

Def $f: X \rightarrow Y$ is cont. means $\forall x_{0} \in X, f$ is cont. at x_{0}.

ThO TFAE for $f: X \rightarrow Y$:

1. F is continuous.
2. For curry V open in $Y, f^{-1}(V)$ is open in X
3. For curry F closed in $y, f^{-1}(F)$ is closed in X 4 if $X=Y=\mathbb{R}, f$ is cont. in the 157 sense. target line The 1. constant functions we Contincous.
4. $I: X \rightarrow X$ is cont.
5. $F: X \rightarrow Y$ cont, $A \subset X \Rightarrow F l_{A}: A \rightarrow Y$ is cont.
6. $f: X \rightarrow Y, g: Y \rightarrow Z \Rightarrow f / l g=g \circ f$ is cont.
s. $F: X \rightarrow \mathbb{K}^{n}$ is $\left.\left(F_{1} \mid x\right), f_{2}(x) \ldots f_{n}(x)\right)$

Ten F is cont $\Longleftrightarrow \forall$ if is coot.
6. $F, g: x \rightarrow \mathbb{K}_{1}$ cont $\cos ^{t} \Rightarrow f+g, f \cdot g, f-g, \frac{f}{g}\binom{$ whines }{ definicic) }
cont.
7. $\pi i: \mathbb{R}^{n} \rightarrow R$ is Cont.

HW: Recd the rest of section 3, about limits, interiors, exteriors.

